

Repair Production Orders

Mascidon, LLC
March 2022

Table of Contents
Repairing Equipment	4
Figure 1.1 BOM for a Fictitious Pump	5
Figure 1.2 Warehouses Used in repair Process	6
Receive Repair Item(s) From Customer	7
Figure 1.3 Goods Return	7
Figure 1.4 Validate Warehouse	8
Figure 1.5 Force Warehouse to be REWORK	8
Figure 1.6 Quote Created from A Return	9
Figure 1.7 Create Button on the Return	10
Figure 1.8 Validation to Click on Create Quote Button	10
Figure 1.9 Boyum UFs Using Line Loop to Create the Quote	11
Figure 1.10 Item Property Setting	11
Figure 1.11 Item Master Identifying a Repair Part	12
Figure 1.12 Create the Quote Header	13
Figure 1.13 Create the Quote Line Items	13
Figure 1.14 Save the Quote and Create Reference to the Return	14
Figure 1.15 Altered Quote	15
Figure 1.16 Buttons Added to Sales Quote Form	16
Figure 1.17 Create PDO from Quote	17
Figure 1.18 Message if No Items are Repair Items	18
Figure 1.19 Message if Selected Item is not a Repair Item	18
Figure 1.20 PDO for Quote Item is Already on File	18
Figure 1.21 First Step in PDO Create	19
Figure 1.22 Create A PDO from a Quote Item	19
Figure 1.23 Get PDO Costs to Associate with Quote	21
Figure 1.24 Search for Component Lookups	22
Figure 1.25 BOM Display from the Double Click	22
Figure 1.26 UF Query to Display the BOM for the PDO	23
Figure 1.27 Resource Labor Setup	24
Figure 1.28 Update the PDO Reference in the Sales Quote	25
Figure 1.29 PDO Created from Quote	25
Figure 1.30 Review the PDO Referenced Document	26
Figure 1.31 PDO(s) Referenced from the Sales Quote	27
Figure 1.32 PDO Costs	27
Figure 1.33 Sales Quote with Pricing Included	28
Customer Approves the Repair	28
Figure 1.34 Validation on the Update Button to Populate PDO Sales Order	29
Figure 1.35 UF Macro to Update the Sales Order on the PDO	30
Figure 1.36 PDO Cost Review	31
Figure 1.37 PDO Item Placement Button	31
Figure 1.38 B1 Validation Trigger for Cost Estimate Button on PDO	32
Figure 1.39 PDO Cost Estimate Query Report	33
Figure 1.40 Sales Order with PDO Costs Button	34
Figure 1.41 PDO Costs Related to a Sales Order	34
Figure 1.42 Sales Order PDO Cost Button Placement	35
Figure 1.43 B1 Validation for Sales Order PDO Cost Button	35
Figure 1.44 UF Used to Show Sales Order PDO Costs	36
Appendix A	38

[bookmark: _Toc96591525]Repairing Equipment
SAP Business One utilizes production orders to track manufacturing costs. In a remanufacturing or repair facility the production orders require that the component item and the manufactured item be the same item. The ‘core’ is being re-worked, so it is its own component material. In the test SAP database I have added 8 items to represent a complete ‘PUMP’. An actual pump would consist of many more parts but this shortened BOM will provide a good example of how to repair a pump. This documentation references the ‘Pump’ as a repair item. It could be brake shoes, generators, or any other piece of machinery that needs repair. In some instances you will not have a BOM for the item being repaired, in other instances you will.
Repairs will use ‘Special’ PDOs to process the repair. ‘Standard’ production orders do not allow users to include a component that is the same item as the ‘manufactured’ item. Also, earlier versions of SAP B1 do not allow even special PDOs to have a component the same item as the manufactured item.
The basic processing of a repair is shown in the diagram below.
Customer Return
Sales Quote
Production Order(s)
Sales Order
Delivery Order
Invoice

Normal SAP relationships do not account for all of the linkages for repairs. For instance, a customer return is not related directly to a sales quote. The sales quote is not related to the PDO. I have added these ‘References’ so that the trail from the invoice back to the receipt of the repair items in the customer return can be tracked easily.
This repair functionality is based on the Boyum B1 Useability package and it is required.

The BOM for the PUMP-01 is shown in Figure 1.1.
[image:]
[bookmark: _Toc96591526]Figure 1.1 BOM for a Fictitious Pump

Let’s say that your company repairs pumps for customers. The customer sends you 20 pumps and asks that these be repaired and put into refurbished condition. You will throw away washers and gaskets and any other component parts that are damaged on the pump. Then you will expend labor and perhaps purchase more components to repair the pump.
In order to accommodate both labor and rework inventory items let’s create 2 warehouses in SAP– Labor and Rework. These are shown in Figure 1.2. I used a numeric warehouse code for labor (20) and an alpha warehouse code for rework (REWORK). You can create these 2 warehouses as numbers or alpha. Note: the queries and Boyum validations and universal functions use these warehouses within the code. Alter the code if you change the ids for the rework and labor

[image:]
[image:]
[bookmark: _Toc96591527]Figure 1.2 Warehouses Used in repair Process

[bookmark: _Toc96591528]Receive Repair Item(s) From Customer
The first step in the repair process is that you receive the pumps to be repaired from a customer. From our viewpoint we need to identify the pumps as belonging to a specific customer and we should place the pump in the ‘Rework’ warehouse to isolate it from new pumps that are being sold to customers. A goods return transaction is used to do this. Refer to Figure 1.3. Note that the unit price is zero – because you do not own the pump being placed into Rework inventory. The warehouse defaults to ‘Rework’ using a Boyum UF and Validation. It is shown in Figure 1.4 and 1.5 respectively.
[image:]
[bookmark: _Toc96591529]Figure 1.3 Goods Return

The following fields must be ‘exposed’ for the Return form, the sales quote form and the sales order form:
· Item code
· Quantity
· Warehouse
· Free Text

[image:]
[bookmark: _Toc96591530]Figure 1.4 Validate Warehouse

[image:]
[bookmark: _Toc96591531]Figure 1.5 Force Warehouse to be REWORK

You may need to change this query to match available warehouses within your SAP.
Now that the pump(s) has been received into the ‘Rework’ warehouse someone can be assigned to look over the pump(s) and determine the extent of the repairs required. As they review the pump repair requirements they will create a sales quote for the customer. Note that there is a button on the Sales Return screen ‘Create Quote’. When this button is clicked a sales quote is created. This is shown in Figure 1.6. The quote created still has zero in the price field. It has changed the warehouse from ‘Rework’ to ‘01’ – main warehouse because the repaired pump will eventually be shipped from that warehouse. (Modify this to match the actual warehouses within your SAP).
[image:]
[bookmark: _Toc96591532]Figure 1.6 Quote Created from A Return

The Boyum functions used to create the sales quote are shown in Figure 1.7 through 1.14.
[image:]
[bookmark: _Toc96591533]Figure 1.7 Create Button on the Return

[image:]
[bookmark: _Toc96591534]Figure 1.8 Validation to Click on Create Quote Button

[image:]
[bookmark: _Toc96591535]Figure 1.9 Boyum UFs Using Line Loop to Create the Quote

Note: I have arbitrarily assigned ‘Property 1’ in the item master to identify the item as a repair part. The item property can be renamed within SAP. Refer to Figure 1.10. You see a reference to the qrygroup1 field in Figure 1.9. If you need to use a different property because of current usage of inventory properties, make changes to all queries and Boyum code where ‘qrygroup1’ is referenced to reflect the usage of a different item property.
[image:]
[bookmark: _Toc96591536]Figure 1.10 Item Property Setting

Any items that will be processed as ‘Repair’ items should have this property set. Refer to Figure 1.11 for an example.
[image:]
[bookmark: _Toc96591537]Figure 1.11 Item Master Identifying a Repair Part

[image:]
[bookmark: _Toc96591538]Figure 1.12 Create the Quote Header

[image:]
[bookmark: _Toc96591539]Figure 1.13 Create the Quote Line Items

[image:]
[bookmark: _Toc96591540]Figure 1.14 Save the Quote and Create Reference to the Return

Referring back to Figure 1.7, a quote has been created from the sales return. The pricing is still set at zero. The quantity on this quote is 2. If the pumps need to undergo basically the same refurbishing process, the quote is ready to be updated with pricing. If the pumps require radically different repairs, then the quote should be altered to have 2 lines of ‘PUMP-01’, each with a quantity of 1 – so that we can quote 2 different repair prices to the customer. I have altered the quote to include 2 lines as this is the more detailed repair type and the easier single line quote is a subset of this process. Refer to Figure 1.15. Note: I used ‘free text’ to identify the specific pump.
[image:]
[bookmark: _Toc96591541]Figure 1.15 Altered Quote

There are 2 buttons at the bottom of the Quote screen – PDO Create and PDO Costs. The item placement tool was used to create these 2 buttons. See Figure 1.16.
The B1 Validations for these 2 buttons are shown in Figure 1.17 and 1.23.

[image:]
[bookmark: _Toc96591542]Figure 1.16 Buttons Added to Sales Quote Form

The SQL condition in Figure 1.17 is doing the following:
1. If none of the quote items have the flag ‘qrygroup1’ (item property 1) set to ‘Y’, then this quote does not have any items that are repair items. The UF REP-13 message alerts the user and stops the creation of the PDO – see Figure 1.18.
2. If the selected (highlighted) item on the quote has the flag ‘qrygroup1’ (item property 1) set to ‘Y’, then this quote item is not a repair item. The UF REP-15 is called with a message – see Figure 1.19.
3. If a PDO has already been created for the selected item the UF REP-14 sends a message to the user as shown in Figure 1.20.
4. If the PDO is to be created, the UF REP-05 is called. Refer to Figure 1.21 for the steps required.

[image:]
[bookmark: _Toc96591543]Figure 1.17 Create PDO from Quote

The SQL script in the validation in Figure 1.17 is:
declare @quote int, @item varchar(50)
select @quote = $[$8.0.0], @item = $[$38.1.0.Selected]
 if isnull(@item,'') = '' select @item = $[$38.1.0.Focused]
-- are any items on the quote repair items?
if (select count(*) from qut1 d
 inner join oqut h on h.docentry = d.docentry
 inner join oitm i on i.itemcode = d.itemcode
 where h.docnum = @quote
 and i.ItemType = 'I'
		and i.qrygroup1 = 'Y') = 0 -- qrygroup1 in item master is used to indicate a repair part
begin
	select 'NoRepairItems' for browse
end
else
	-- is the selected item a repair item?
	if (select qrygroup1 from oitm where itemcode = @item) = 'N'
		begin
			select 'ItemNotRepairItem' for browse
		end
	else
		-- check if a PDO for this item and quote is already referenced (qut21)
		if (select count(*) from qut21 r inner join oqut h on h.docentry = r.docentry inner join owor w on w.docnum = r.refdocnum and r.RefObjType = '202' and w.status <> 'C'
 where w.ItemCode = @item and h.docnum = @quote and w.comments = $[$38.163.0.Selected]) > 0
			begin
				select 'PDOItemAlreadyOnFile' for browse
			end
		else
			begin
				select 'ProcessPDO' for browse
			end

[image:]
[bookmark: _Toc96591544]Figure 1.18 Message if No Items are Repair Items

[image:]
[bookmark: _Toc96591545]Figure 1.19 Message if Selected Item is not a Repair Item

[image:]
[bookmark: _Toc96591546]Figure 1.20 PDO for Quote Item is Already on File

[image:]
[bookmark: _Toc96591547]Figure 1.21 First Step in PDO Create

The last macro command shown in Figure 1.21 calls the UF REP-06. This is shown in Figure 1.22.
[image:]
[bookmark: _Toc96591548]Figure 1.22 Create A PDO from a Quote Item

The macro shown in REP-06 (Figure 1.22) is complex. Let’s review the code.
The PDO header comes from this code:
// PDO Header
Activate(4369); // PDO screen
Set($[$20.0.0]|P); // set type to special
Transfer($[$4.0.0]|$[$68.0.0]); // customer
Transfer($[$38.1.0.Selected]|$[$6.0.0]); // PDO mfg item
Transfer($[$38.163.0.Selected]|$[$3.0.0]); // PDO mfg item free text
Transfer(SQL:Select Case when (Select count(*) from oitt where code = $[$6.0.0]) = 0 then (Select 'FALSE') else (Select 'TRUE') end|@STORE6);
@STORE4=$[$6.0.0];						// mfg item
Transfer($[$38.11.0.Selected]|$[$12.0.0]); // PDO mfg qty
Set($[$78.0.0]|01); // Whs of mfg item
AutoPressNextPopup();
set($[$26.0.0]|@STORE2); // Due date Activate(4369); // PDO screen
Set($[$20.0.0]|P); // set type to special
Transfer($[$4.0.0]|$[$68.0.0]); // customer
Transfer($[$38.1.0.Selected]|$[$6.0.0]); // PDO mfg item
Transfer(SQL:Select Case when (Select count(*) from oitt where code = $[$6.0.0]) = 0 then (Select 'FALSE') else (Select 'TRUE') end|@STORE6);
@STORE4=$[$6.0.0];						// mfg item
Transfer($[$38.11.0.Selected]|$[$12.0.0]); // PDO mfg qty
Set($[$78.0.0]|04); // Whs of mfg item
AutoPressNextPopup();
set($[$26.0.0]|@STORE2); // Due date

The header populates the item, quantity, and places the ‘Free text’ pump specific information in the PDO remarks. It sets the manufactured item warehouse equal to the ‘01’ warehouse (the default whs in my database). The PDO is set up as a special PDO because we want to control the components used and not just use the default BOM as a ‘Standard’ PDO would use.
The components for the PDO are set up in the next part of the macro code:
// PDO item level
Transfer($[$38.1.0.Selected]|$[$37.4.0.1]); // PDO mfg item = 1st component - same item as the parent item
Set($[$37.10.0.1]|REWORK); // Set component whs to rework - requires prior setup of a REWORK whs
set($[$37.1880000002.NUMBER.2]|290); // Resource type
Set($[$37.4.0.2]|TECHNICIAN); // Resource - requires prior setup of the 'resource' = 'Technician'
click($[$1.0.0]); // Add the PDO
Activate(4369); // PDO screen
activate(1291); // find last PDO
Activate();
@STORE3=$[$18.0.0]; // PDO #
I set up a resource to account for the labor portion of the PDO. I have entered 2 components: the first component is the same pump as the manufactured item. The warehouse used is the ‘REWORK’ warehouse because when the customer return is processed this is where the pump resides in inventory. The second is the ‘Technician’ resource as set up in Figure 1.27.
You could add a third labor charge for ‘Evaluation’ if you had a charge for evaluating the repair requirements of the pump. You would need to set up ‘Evaluation’ as another resource.
The next portion of the macro calls the UF REP-07 which adds the ‘reference link’ to the PDO into the sales quote. This will be shown later in this document.
The next portion of the code sets up the reference link to the quote within the PDO. It accesses the link reference popup and stores the sales quote information.
// now set up the reference link to the quote
Activate(4369); // PDO screen
activate(1291); // find last PDO
click($[$36.0.0]); // summary tab
click($[$127.0.0]); // Click the reference ellipsis
Activate(); // reference document form
set($[$5.1.0.1]|23); // select link to quote
Set($[$5.3.Number.1]|@STORE1); // link to the quote number
click($[$540020001.0.0]); // Update this form
Activate();
click($[$1.0.0]); // update PDO to store the reference
click($[$35.0.0]); // back to the components tab on the PDO
Focus($[$37.4.0.3]); // go to row 3, item field

The last step in the macro is to leave the PDO focus as the component item. From there, the user can double click on the item to bring up a list of all of the components of the manufactured item.
When the user double clicks on the ‘No.’ field ion the PDO, the ‘report’ shown in Figure 1.24 is displayed.
[image:]
[bookmark: _Toc96591549]Figure 1.23 Get PDO Costs to Associate with Quote

[image:]
[bookmark: _Toc96591550]Figure 1.24 Search for Component Lookups

The ‘double click’ initiates the B1 Validation shown in Figure 1.25. The universal function REP-16 is initiated if the manufactured part has a related BOM structure. The format of the universal function is shown in Figure 1.26.
[image:]
[bookmark: _Toc96591551]Figure 1.25 BOM Display from the Double Click

[image:]
[bookmark: _Toc96591552]Figure 1.26 UF Query to Display the BOM for the PDO

Note: the ‘select target’ portion of the universal function moves the ‘selected’ information from the query display to the PDO component lines. i.e. when the report from Figure 1.24 is displayed, the user can highlight one or more lines and then click the ‘Select’ button. The data selected will be written to the component portion of the PDO.
The ‘Select Target’ fields shown must be in the same sequence as the fields. In this case the fields are: Component Item No. - $[$37.4.0]; The item description - $[$37.3.0]; the base quantity - $[$37.2.Number]; the warehouse - $[$37.10.0]; and the planned qty - $[$37.14.Number]. If your PDO form is organized with these fields in a different order on the PDO, then these same fields need to be adjusted in the ‘Select Target’ area of the REP-16 universal function. Note: if the description field is not an active field, then replace $[$37.3.0]; with just ‘;’.

[image:]
[image:]
[bookmark: _Toc96591553]Figure 1.27 Resource Labor Setup

The UF REP-07 is used to add the reference information regarding the PDO to the sales quote.

[image:]
[bookmark: _Toc96591554]Figure 1.28 Update the PDO Reference in the Sales Quote

Let’s look at the PDO created for the second line of the quote – see Figure 1.29.
[image:]
[bookmark: _Toc96591555]Figure 1.29 PDO Created from Quote

Note: the line items boxed in Red were selected as components that need to be replaced during the repair. (the double click functionality from the component no. field on the PDO.
[image:]
[bookmark: _Toc96591556]Figure 1.30 Review the PDO Referenced Document

Note: the PDO references the sales quote used to create the PDO.
[image:]
[bookmark: _Toc96591557]Figure 1.31 PDO(s) Referenced from the Sales Quote

Note: I manually cancelled PDOs created during testing to verify that cancelled PDOs were ignored.
At this point in the process the sales quote costs are still $0. The second button on the sales quote screen ‘PDO Costs’ allows us to review the costs associated with the repair. Clicking on the PDO Costs button shows the estimated PDO repair costs – see Figure 1.32.
[image:]
[bookmark: _Toc96591558]Figure 1.32 PDO Costs

At this point there could be a ‘formula’ added to calculate the line item sales quote prices from the component and resource costs, or the user could enter the pricing. If automating this process, add another Boyum button next to the ‘PDO Costs’ and execute a validation that updates the sales quote lines with the costs based on your formulas. For our example quote I added the prices $250 and $225 to the sales quote. This is shown in Figure 1.33.
[image:]
[bookmark: _Toc96591559]Figure 1.33 Sales Quote with Pricing Included

[bookmark: _Toc96591560]Customer Approves the Repair
The sales quote was sent to the customer and they approved the sales quote.
The sales quote is still open. Use normal SAP functionality to create the sales order from the sales quote.
At this point we can assign the PDOs to the repair technicians. Some time may have passed and you’ve forgotten the PDO numbers. Access the sales quote and then access the ‘reference ids’ and drill to each of the PDOs. The PDOs have a status of ‘Planned’. They do not reference the sales order at this point. Change the status to ‘Released’ and click update. During the ‘Update’ a Boyum validation function is called to update the link on the PDO to the sales order associated with the quote. The Boyum validation is shown in Figure 1.34. The associate SQL condition is shown below Figure 1.34.
[image:]
[bookmark: _Toc96591561]Figure 1.34 Validation on the Update Button to Populate PDO Sales Order

SQL Condition Statement:
/*
	Look to see if the sales order number can be added to the PDO

	Created					02/19/22	dcm

*/
declare @salesorder int, @pdodocentry int, @freetext varchar(100), @item varchar(50), @quotedocentry int

select @salesorder = $[$32.0.0], @freetext = $[$3.0.0], @item = $[$6.0.0]
select @pdodocentry = docentry from owor where docnum = $[$18.0.0]

if isnull(@salesorder,0) = 0 and $[$10.0.0] = 'R'	-- PDO is released
begin
	if (select count(*) from wor5 where docentry = @pdodocentry and RefObjType = '23' and objtype = '202') > 0
			-- PDO is related to a quote
		begin
			select @quotedocentry = RefDocEntr from wor5 where docentry = @pdodocentry and RefObjType = '23' and objtype = '202'
			select @salesorder = h.docnum	-- get the sales order relationship to the quote for item - free text link
			from qut1 d
			inner join ordr h on h.docentry = d.TrgetEntry
			where d.docentry = @quotedocentry
				and d.itemcode = @item
				and (convert(varchar(100),d.FreeTxt) = @freetext or isnull(@freetext,'') = '')
			if isnull(@salesorder,0) > 0
			begin
				select 'UpdatePDOwithOrder'
			end
		end
end

Assuming the validation conditions are met:
· No current sales order
· PDO is released
· PDO is related to a quote
· Quote is related to a sales order
Then the macro UF REP-09 shown in Figure 1.35 is executed.
[image:]
[bookmark: _Toc96591562]Figure 1.35 UF Macro to Update the Sales Order on the PDO

The SQL associate with the macro is:
select h.docnum
from qut1 d
inner join ordr h on h.docentry = d.TrgetEntry
where d.docentry = (select r.RefDocEntr
		from owor w
		inner join wor5 r on r.docentry = w.docentry
		and r.RefObjType = '23'
		and r.objtype = '202'
		where w.docnum = $[$18.0.0])
	and d.itemcode = $[$6.0.0]
The PDO has a button to review the costs. The ‘Cost’ button is shown in Figure 1.36.
[image:]
[bookmark: _Toc96591563]Figure 1.36 PDO Cost Review

The item placement tool used to display this button is shown in Figure 1.37.
[image:]
[bookmark: _Toc96591564]Figure 1.37 PDO Item Placement Button

The B1 Validation that is used when this button is clicked is shown in Figure 1.38.
[image:]
[bookmark: _Toc96591565]Figure 1.38 B1 Validation Trigger for Cost Estimate Button on PDO

The UF called by the B1 Validation is shown in Figure 1.39. Note: the data shown in the report includes both items and resources. The golden arrow assignment for the report is controlled by the ‘Multi-target’ setting in the Wizard. This is also shown in Figure 1.39.
[image:]
[image:]
[bookmark: _Toc96591566]Figure 1.39 PDO Cost Estimate Query Report

The sales order screen has a button to show all PDO costs related to this sales order. Normally it is just the PDOs that reference the sales order directly, but if a PDO has sub-assemblies that are required and these are linked to the PDO – Sales order, then all of the related PDOs will display.
The sales order screen is shown in Figure 1.40. The report produced when the button is clicked is shown in Figure 1.41.

[image:]
[bookmark: _Toc96591567]Figure 1.40 Sales Order with PDO Costs Button

[image:]
[bookmark: _Toc96591568]Figure 1.41 PDO Costs Related to a Sales Order

The item placement screen used to place the button on the sales order is shown in Figure 1.42. The B1 Validation used to process the click of this button is shown in Figure 1.43.
[image:]
[bookmark: _Toc96591569]Figure 1.42 Sales Order PDO Cost Button Placement

[image:]
[bookmark: _Toc96591570]Figure 1.43 B1 Validation for Sales Order PDO Cost Button

The UF REP-11 is the SQL query that displays the costs. This UF is shown in Figure 1.44.
[image:]
[bookmark: _Toc96591571]Figure 1.44 UF Used to Show Sales Order PDO Costs

The SQL in this universal function is shown below.
/*
	Production order cost estimates for a sales order

	Created					02/19/22	dcm

	A single sales order could be related to multiple PDOs.
	PDOs in turn could be related to other PDOs.

	This is a report of the repair costs for a sales order.
	It is initiated from the sales order.

*/
declare @order int
create table #pdos(PDO int)
select @order = $[$8.0.0]

insert into #pdos
select docnum
from owor
where OriginNum = @order
	and LinkToObj ='17'

insert into #pdos
select docnum
from owor
where OriginNum in (select pdo from #pdos)
	and LinkToObj <>'17'

select h.docnum as 'Production Order'
	, h.itemcode as 'Item to repair'
	, i.ItemName as 'Description'
	, h.Comments as 'Item Tag'
	, h.PlannedQty as 'Repair Quantity Planned'
	, h.CmpltQty as 'Repair Quantity Completed'
	, case when h.status ='P' then 'Planned' when h.status = 'R' then 'Released' when h.status = 'C' then 'Cancelled' else 'Closed' end as 'Status'
	, h.DueDate as 'Due Date'
	, h.OriginNum as 'Sales Order'
	, h.cardcode as 'Customer'
	, s.CardName as 'Customer Name'
	, s.DocDueDate as 'Order Due Date'
	, case when d.itemtype = '4' then d.itemcode else r.ResCode end as 'Component'
	, case when d.itemtype = '4' then w.AvgPrice else r.StdCost1 end as 'Component Cost'
	, d.PlannedQty as 'Planned Quantity'
	, d.PlannedQty * (case when d.itemtype = '4' then w.AvgPrice else r.StdCost1 end) as 'Extended Amount Planned'
	, d.IssuedQty as 'Issued Quantity'
	, d.IssuedQty * (case when d.itemtype = '4' then w.AvgPrice else r.StdCost1 end) as 'Extended Amount Issued'
from owor h
inner join wor1 d on d.DocEntry = h.DocEntry
left join ordr s on s.docnum = h.OriginNum
inner join oitm i on i.itemcode = h.ItemCode
left join oitm j on j.itemcode = d.ItemCode
left join oitw w on w.WhsCode = d.wareHouse and w.ItemCode = d.ItemCode
left join ORSC r on r.ResCode = d.itemcode
where h.docnum in (select pdo from #pdos)
	and h.status <> 'C'		-- ignore cancelled PDOs
	and d.itemcode is not null
order by 1,2
drop table #pdos

[bookmark: _Toc96591572]Appendix A
A ‘Configuration Category’ was defined in Boyum to associate all item placement tool, B1 Validations, and Universal Functions as part of this Boyum ‘repair’ add-on.
All of the Boyum functions used in this document are stored in the zipped file included with this documentation.

Repair Processing Mascidon, LLC 248-568-0418	Page 12

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image1.png

image2.png

image3.png

